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Abstract

This paper presents the experimental results of a research project financed by INFN
(National Institute for Nuclear Physics). The goal of this project is to realize a
cluster of Personal Computers (PCs) suitable for distributed software in the field
of nuclear physics. The developed hardware must have a low cost and must be
able to interconnect 32 PCs with an expansion capacity of up to 100. Due to the
requirements of this research project, it seems natural to look at it as an application
of our general hardware architecture presented in [1]. Here, we present the results
obtained and compare them with other works in literature. The results show that
our architecture is preferable when low cost hardware and high performance are the
goals.

Keywords: Computer Communication Networks, Switching, Routing, Multicon-
nected Networks, Digital Design.

1 Introduction

The case study depicted below is part of a research project of the INFN. The
objective of this project is the realization of a cluster of computers for the dis-
tributed elaboration of algorithms related to nuclear physics. The performance
of a cluster depends greatly on the sub-network of communication [2]. For this
purpose research is directed to the development of network interfaces able to
minimize the latency and maximize the throughput of communications. In
particular, the principal points of the research concern:

• the design of a new transmission medium and of the related transceivers
with the aim of obtaining high-bandwidth links;

• the study of new routing algorithms that use techniques of artificial intelli-
gence (neural networks, fuzzy logic, genetic algorithms, etc.).;
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• the realization of a network interface for PCI or AGP buses able to imple-
ment the routing algorithm in hardware;

• the implementation of a communication driver that can efficiently transfer
information between the network interface and the operating system mini-
mizing communication latency.

The first prototype of the system is a cluster of 32 hosts, with the possibility of
a gradual increase up to a maximum of 100 hosts. It uses links with 100 Mbps
bandwidth (Ci) with the aim of using a commercial transceiver in conformity
with standard IEEE802.3u (FastEthernet). It is also desirable that, even in
the worst case (when all the hosts transmit contemporarily) a bandwidth of
at least 80Mbps (Cmax/N) is guaranteed to each host. Lastly, in order to
avoid problems related to Electro-Magnetic Interference (EMI), we must use
a maximum clock frequency for the hardware of 50 MHz (fWM).

The article is structured as follows: In Section 2 the design of the router is pre-
sented with the aim of applying our design flow and the proposed architecture
to our case study. In Section 3 some comparisions with other router archi-
tectures in literature are shown and in Section 4 the conclusions and future
prospects of such research are reported.

2 The Design

Here we report our studies and results. On the basis of constraints indexed
in the previous section and following the design flow described in the paper
[1], we have chosen a network topology and a routing algorithm and sized the
different units of the router.

2.1 Choice of the topology

The specifications of our project imply that the topology must be easily scal-
able; this reduces the choice, among the topologies listed in Table 1, to the
Recursive-Cube of Ring (RCR) or to the k-ary n-cube. In fact, in all of the
other topologies, if we want to expand the network we need at least to dou-
ble the hosts. From equation (1) in [1] relative to the maximum capacity for
each host, and considering the design constraints, this must be 2g

D
≥ 0.8. For

reliability, we impose that, for a network of 100 hosts, it is 2g
D

≥ 1.

With reference to Table 1, fixing the values n and k so as to realize a network
with around 100 hosts (N= 100), we can observe (Table 2) that the RCR is
the topology that allows the relation 2g

D
≥ 1 to be satisfied with the minimum
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value of g. We choose the topology that satisfies the precedent relation for
the least value of g with the aim of reducing the costs. In fact, the number of
cables and transceivers for each host is directly proportional to g. It is possi-
ble to observe that, for this value (g = 5), the RCR appears, essentially, as a
certain number of cubes connected by 8 rings. Each host is connected to three
other hosts of the same cube and with two hosts on the same ring (see Fig.
1).

Fig. 1. Topology RCR(3,3,0)

2.2 Input Unit and Output Unit Sizing

The transceivers of the standard IEEE802.3u provide two modalities of data
transfer: serially at 100 MHz or in parallel at 25MHz (4 bit at a time). As we
want to use a clock frequency less then 50MHz, we have adopted the second
solution. Thus we have fi = 25MHz and bI = 4. Since we intend maximizing
the performance of the network, according to the results shown in [3], we adopt
a Virtual Cut-Through (VCT) switching technique. Such a policy foresees that
the packets that temporarily are not routable, because of the occupation of
the destination port by another packet, are memorized in a buffer. For this
purpose, one of the channels of the switch is connected to the memory of the
network card, as a consequence we have nIMUX = g + 1, that is to say, the
number of the inputs of the MUX is bigger by one unit in comparision to the
number of links for each host. So, we can multiplex the data coming from
the links in the same way as for those coming from the memory. The same
additional channel is used both to transmit the packets generated by the same
host at which the router is located and to receive the packets destined to the
host. For multiplexing the nIMUX = g +1 = 6 channels with time division, we
must impose (see equations (3) in [1])

bA ≥ 12 (1)
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Taking the least value of bA that satisfies the relation we have fB = 50MHz.
The addresses of 100 hosts can be represented with 7 bits (inferior to bA);
therefore all the bits of the destination address of the packet can be on the
internal bus of the switch in the same clock period.

Since the memory can be connected directly to the MUX, it does not need
IU/OU units (nIU = nIMUX − 1).

In order to verify if we can use FPGA of the family FLEX10KA-1, we calculate,
by the coefficients in Table I in [1] and the equations given in the previous
paragraph, the maximum frequencies of the different units in the case bA =
bB = 12, bI = bO = 4, nIMUX = 6. Table 4 shows that all the maximum
frequencies (fmax) of the different units are greater than the work frequencies
(fW ) that we need to use.

2.3 Choice of the Routing Algorithm

As explained in [1], the choice of switching technique and routing algorithm
has a great impact on harware complexity and performance. In order to max-
imize the throughput we have chosen VCT as the switching technique, while,
with the aim of reducing hardware complexity, it is preferable to implement
a minimal routing algorithm, so that routing decisions are based solely on
destination address. Nevertheless, an adaptive algorithm would allow higher
performance. Therefore an intermediate approach is adopted that makes use of
an adaptive algorithm with a simple hardware implementation. This solution
combines congestion bit technique with a classical minimal algorithm used in
multiconnected networks: the e-cube routing.

2.3.1 E-cube routing

This algorithm is a non-adaptive, minimal, deadlock free routing algorithm
for n-dimensional hypercubes [4].

A n-degree hypercube consists of 2n nodes arranged in a n-dimensional cube,
where each node is connected to n other nodes. In a n-degree hypercube the
address of each node may be encoded with a n-bit string so that the addresses
of directly connected nodes differ only by one bit. It is obtained by ossociating
a bit for each dimension, disposing two nodes in this dimension and assigning
them a different bit value. With this addressing scheme the routing algorithm
can proceed as follows.

When a message is received at an intermediate node, the node and destination
node addresses are compared using a bitwise exclusive-or (XOR) operation. If,
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after the XOR operation, there is one bit sets to one (1) then the message must
traverse in that dimension to reach the destination. e-cube routing chooses the
least significant bit that is set to 1, and sends the message in the corresponding
direction, waiting for the link or node to be free (not busy). Proceeding in
this way, e-cube stops routing when there are no more bits that need to be
corrected. At this point, the destination has been reached.

2.3.2 Applying the e-cube algorithm to RCR

The chosen topology (RCR) is not a hypercube therefore we cannot apply the
e-cube algorithm directly. Nevertheless, few modifications are needed.

The RCR is formed by cubes (hypercubes of order 3) connected by rings
(see fig.1). In particular, the address of a host can be seen as a ring part (Rp)
followed by a cube part (Cp) expressed, respectively, by an integer and a string
of three bits: the integer identifies the position of the host on the ring, while
the three bits codify its position inside the cube.

Inside the cube we can apply e-cube routing, as explained before, by doing
a XOR operation between the cube part of the addresses, so that we obtain
a three bit string (z,y,x) that identifies the directions to follow, as explained
before.

An arithmetic difference between the destination address and the address of
the host that must route the packet (current host) is sufficient to determine
if it is more convenient, in terms of distance, to forward the packet from one
side or the other of the ring. More properly, if Na is the number of hosts on a
ring, we must evaluate the difference, modulo Na, of the integer part (Rp) of
the addresses and compare it with Na/2.

Let us observe that XOR operator is equivalent to the modulo-2 sum. This
observation will allow us to extend the e-cube also to rings.

Let us imagine the string (z,y,x) extended through two bits (l,r) to obtain the
five-bit string PosDir=(l,r,z,y,x) and to evaluate the values of (l,r) by using
the difference mod Na previously computed, as follows: l=1 if 0 < |Rp,ch −
Rp,dh|Na ≤ �Na/2� and r=1 if |Rp,ch − Rp,dh|Na ≥ �Na/2� where Rp,ch and
Rp,dh are, respectively, the ring part of the address of the current host and
destination host. Note that:

• (l,r)=(0,0) if current node and destination node are in the same cube;
• (l,r)=(1,0) if it is more convenient to forward the packet on the left side of

the ring;
• (l,r)=(0,1) if it is more convenient to forward the packet on the right side

of the ring;
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• (l,r)=(1,1) if it is indifferent which side is chosen.

With this extension we can apply the e-cube routing using the string PosDir.
It is possible to observe that PosDir identifies the dimensions that the packet
has to traverse to reach its final destination i.e. the possible directions that
can be chosen.

2.3.3 congestion bit

To make the routing adaptive we have used the congestion bit technique.
Essentially a host in the congestion state advises the nearby hosts by resetting
a suitable bit inside the packet. The host getting a packet with the congestion
bit set to zero considers the link from which the packet arrived as busy, up to
when a subsequent packet advising the end of the congestion state arrives. It
is possible to show, by simulations, that, with such a technique, the number
of packets sent towards hosts in the congestion state is reduced; this has the
effect of reducing the latency of the network.

The congestion bit mechanism is implemented endowing the router with a
Congestion-Mask (CongM): a bit of the Congestion-Mask is associated to
each output port. When a packet generated (and not simply forwarded) by
a neighbor arrives, its congestion bit is copied into the CongM in the position
corresponding to the port from which the packet arrived. For the future we
are planning to manage the Congestion-Mask with a smart unit.

2.3.4 Next Host Computation

In this section we will show, with a detailed example, the routing algorithm,
i.e. the sequence of steps needed by a host to determine the next-host on the
route to the destination.

We assume that each node maintains three strings: CongM and PosDir, ex-
plained in the previous section, and a third string, named Mask, of g bits (one
bit for each port) that identify if a port is free (1) or busy (0).

When a packet arrives, the host evaluates PosDir and refreshes CongM as
shown before. After, a logical AND between the three strings (Pos-dir, Mask,
CongM) gets the optimal ports for the routing. Currently, if after the AND
operation there are still more possible ports for the routing (in other words if
there are many 1s), the algorithm uses a static priority assigned to the ports,
that is to say, it selects the port correspondent to the bit most to the left
among those set, according to the order left-right-Z-Y-X where left and right
are the ports of the left hand and right hand of the ring and Z, Y, X are
the ports on the cube in homologous directions. Vice versa, if the resultant
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string is null but there is sufficient space in the buffers then the packet is
temporarily memorized. Otherwise, if the space in the buffers is not sufficient,
it is discarded.

The figure 2 illustrates the steps just explained.

z       y      x
Cube PartRing Part

z       y      x
Cube PartRing Part

               Na / 2
with

| Rp,ch − Rp,dh |Na
Compare

l        r      z      y       x

PosDir

       ?
All zeros

YES

NO

Arrived
Packet is

left  right    Z      Y     X

       ?
All zeros

YES

NO

 Save Packet
in Memory

Drop Packet

Current Host Destination Host

XOR

Rp,dhRp,ch Cp,ch Cp,dh

l,r z,y,x

CongM

Mask

AND

Select first 1 on the left
and forward the packet

       ?

YES

NO

Memory Full

Fig. 2. Functional description of the Routing Algorithm

With the aid of figure 3 we will show a simple example to clarify everything.

In the figure 3, an RCR network with 24 nodes is shown. The nodes are
disposed on three cubes (Na = 3) connected by eight rings. Therefore each
node may be identified by an address (Rp, Cp) composed by an integer (Rp)
in the range 0-2 and a three bit string (Cp). We will assume that the host
(0,”000”) wants to send a packet to the host (1,”110”).
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Fig. 3. Example of routing: the host (0,”000”) sends a packet to the host (1,”110”).
The black host (1,”100”) is in congestion state and it has advised its neighbors,
then the host (1,”000”) avoids forwarding it the packet.

• Step 1: Source node (0,”000”) compares its address with the destination
address (1,”110”) to evaluate the PosDir string. The difference, mod Na, of
the integer parts of the addresses is |0 − 1|3 = 2 and the XOR operation
between cube parts returns ”110” so that the PosDir string is (0,1,1,1,0).
The congestion mask of the source node is CongM=(1,1,1,1,1) so that none
of the neighbor nodes are in congestion state. The Mask string is (0,1,1,1,0)
therefore ports in l and x directions are busy. From the AND operation
between PosDir, CongM and Mask the string (0,1,1,1,0) is obtained. The 1s
in this string identify the directions through which it is possible (free port)
and convenient (not congested) to route the packet. The node selects the
first one on the left and forwards the packet in the right direction (to the
node (1,”000”)).

• Step 2: The packet arrives at the node (1,”000”).
The node compares its address with destination address and sees that they

are in the same cube (i.e. the difference of the integer parts of the addresses
is zero). The XOR opeartion between the cube parts of the addresses permits
the evaluation of the PosDir string to be completed (PosDir=(0,0,1,1,0)).
The value of the Mask=(1,1,1,1,1) indicates that all ports are free while
CongM=(1,1,0,1,1) specifies that the node in z direction is in congestion
state. The AND operator returns (0,0,0,1,0) and the packet is routed in the
y direction (toward (1,”010”)).
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• Step 3: The packet arrives at the node (1,”010”).
With the same procedure of previous nodes, PosDir=(0,0,1,0,0) is ob-

tained. Because all ports are free (CongM=(1,1,1,1,1)) and none of the
neighbors are in congestion state (CongM=(1,1,1,1,1)), the AND opera-
tor returns (0,0,1,0,0). The packet is forwarded in z direction (to the node
(1,”110”)).

• Step 4: The packet arrives at the node (1,”110”). The node compares its
address with destination address and notes that they are the same because
the difference of the integer parts of the addresses is zero and the XOR
operation between the cube parts also returns zero. It follows that the packet
has arrived at the destination and the router sends it to the host through
the host interface.

2.3.5 Performace Evaluation

We realized a simple network simulator for analyzing different routing algo-
rithms.

The simulator is a C program that simulates RCR networks at the flit level. A
flit transfer between two adjacent nodes is assumed to take place in one clock
cycle (a tic). The network is simulated synchronously, moving all flits that
have been granted channels in one clock cycle and then advancing time to the
next cycle. The simulator can be configured to support different network sizes,
degree, number of buffers, routing algorithms, message lengths and message
generation rates. The simulator can generate various statistics, such as average
message latency, maximum latency and throughput.

All of the experiments are conducted under uniform traffic distribution, as-
suming message length (LF ) of 100 tics and a message generation rate equal
to 20% of total node capacity. Total node capacity can be expressed as g/LF
because a node can send at most g packets at the same time and it must wait
for the complete transmission of the packets (LF tics) before it can begin to
transmit.

The simulations show that a buffer with size equal to 3 packets is sufficient to
guarantee a very low probability of deadlock, provided that the Congestion-
Mask is considered only for hosts of the same cube. Moreover, in simulations
we have observed that the throughput is maximized if the host enters the
congestion state and stops injecting more packets onto the network when 2
buffers are full and if the host leaves the state of congestion when all the
packets in the buffer have been transmitted. Once the maximum dimension of
the packet (P Byte) has been chosen we need a memory of 3P Byte.

Table 3 shows the results of some simulations for RCR networks of different
size (N=32,64,128) with and without the congestion control. As it is possible
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to obvserve, the congestion mask allows latency to be reduced. For example,
for N = 64 latency reduction due to the congestion mask is of approximatively
35%.

2.4 RTL Implementation of the Routing Unit and Mux Control Unit

Relatively to the Mux Control Unit (MCU), a static priority is associated for
each input channel: if two words of two packets arrive contemporarily, the
word coming from the channel with greater priority is the first transferred
onto the internal bus.

In particular, the memory has the greatest priority in order to reduce the
latency; in fact, the packets temporarily blocked, waiting for a free output
channel, originate from the memory channel. The links of the ring and, after,
those of the cube follow in the priority ranking. In order to maximize the
peak bandwidth, several packets can be transmitted from the memory to the
switch, allowing all the six time slots to be utilized. In particular, the MCU
has as output a NextCh-free signal that advises the host interface that the
next time-slot is free. By monitoring this signal it is also possible to analyze
the traffic on the network and to adapt the traffic generated by the host to
the actual traffic in the network.

The complexity and the timings of the Routing Unit (RU) and MCU are
evaluated by VHDL codes and their following synthesis (see Table 4). Once
the timings τMCU and τRU have been extracted from the simulations, we can
calculate the time of elaboration as τe = τMCU + τRU ; it is equal to 33 ns.

2.5 FIFO Sizing and Router Latency Evaluation

In order to use a 50MHz clock, it is necessary to insert a sufficient number of
registers on the critical path MCU-MUX-RU-DEMUX to make the maximum
delay less then 1

fB
= 20ns. Given that τio + τe = 50ns, two registers dividing

the critical path into three parts, each with a propagation time less then 20ns,
are sufficient. In particular, it is possible to insert a register after the MUX,
and one after the RU. In order to balance the two paths, as seen in the previous
paper in the subsection V-A in [1] relative to the pipeline, it is necessary to
insert a further register before the DEMUX.

So, the FIFO queue is constituted by 2 registers of 12 bits. The complete
switch is represented in Fig. 4.

We can now evaluate the mean router latency in conditions of low traffic.
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Fig. 4. Final Switch Diagram

Placing the current values into equation (4) in [1] we obtain τR = 0.32µs.
Adding this value to the delay due to the transceiver [5], 60 ns in transmission
and 210 ns in reception, we obtain τ ′

R = 0.59µs. For a cluster of 104 hosts
with RCR topology we have d = 4.5, from which a network setup latency
latsetup = τ ′

R · d = 2.65µs follows (in comparison with the 5µs of an ideal 500
port Fast Ethernet Switch).

2.6 Complexity Evaluation and FPGA choice

By the equations given in the preceding paragraph we can evaluate the com-
plexity of the FPGA. As regards the number of LCs and FFs, from equations
(6)-(9) in [1], it follows:

LCtot = 5(28 + 26) + 56 + 90 + 41 + 96 = 553 (2)

FFtot = 2 · 5 · 29 + 24 + 25 + 56 = 395 (3)

For calculating the number of PINs, we have to consider that the switch is
interfaced with 5 transceivers, each with two 4-bit buses (one bus is for recep-
tion and one is for transmission) and that an input of the MUX, likewise an
output of the DEMUX, are directly connected to a memory with a data bus
of 12 bits. Additionally, we need 7 more bits to set the address of the host
and 5 bits for the Congestion-Mask, that we assume can also be controlled
externally.
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Besides, it is opportune to multiply the value obtained above by a factor 1.2
to take into account the presence of control and handshake pins necessary
for the exchange of information between the switch, the transceivers and the
memory. Finally, we have:

PINtot = 1.2 · [2(5 · 4 + 12) + 7 + 5] = 91 (4)

From the datasheet of the family FLEX10KA we have determined that such
resources are available in model EPF10K10A TC144-1 (see Fig. 5).

We wish to underline that, after the board is realized, thanks to the repro-
gramming capability of the FPGA, it will be possible to evaluate routing
algorithms different from the one proposed if their complexity, in terms of
LCs, FFs and PINs, does not exceed the resources present in the FPGA. It
will also be possible to change the topology of the network, provided that the
new target topology has a degree less or equal to 5.

3 Related Works and Their Comparison with our Case Study

There are many works in literature concerning router architectures. To the best
of our knowledge, not so many of them are directly comparable to our proposal.
Here, we briefly review some of the most recent papers in literature that can
be approximately related to our work. At the end we summarize the main
characteristics of all the works and underline advantages and disadvantages.

An interesting work is reported in [6]. The authors present a router archi-
tecture for flexible routing in multihop point-to-point networks. The router
consists of a single-chip programmable routing controller (PRC) and an exter-
nal memory that acts as a buffer. The PRC provides 4 bi-directional physical
links each including three virtual channels. There is a separate routing engine
for each physical link. A 32-bit time multiplexed bus is used to share data
among inputs, outputs and the host. Of course, due to the programmable
hardware, the average packet latency is high, above all when there are high
network loads. The single-chip implementation employs an internal clock speed
of 40 MHz and links at 200 Mbps. The PRC has been designed using the HP
CMOS14 process and was packaged by MOSIS. About 500,000 transistors
were required.

In [7], a parametrized cost and speed model for router performance is de-
scribed. The paper analyzes the Dimension Order [8], Planar Adaptive [9],
Turn Model [10] and *-channel [11] routing algorithms. The model assumes
the use of a 0.8 µm CMOS gate array process. The technology permits the
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realization of the basic two-input NAND gate with a delay ranging from 250
ps (no load) to 750 ps (five gate load). The aim of the work is to under-
stand the complexity of different routing strategies in terms of realization cost
and speed. The essential components of the router proposed are: a crossbar,
that provides the basic switching functions; the flow control units, that per-
form flow control and manage buffers; the address decoders, that examine the
packet header to generate the set of possible routes; the routing arbitration
logic, that chooses the path and connects and disconnets inputs and outputs
and virtual channel controllers, that multiplex the physical channels. The cost
model does not include the physical layout and interconnection issues. The
reported gate counts assume routers with 16-bit datapaths and channels and
they do not include I/O buffering, pads and synchronization. Gate counts for
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the analyzed routing algorithms for different numbers of inputs and outputs
are reported.

The authors of paper [12] propose another kind of router. It was designed for
real-time multicomputer networks. The work presents a novel router architec-
ture that supports end-to-end delay and guarantees throughput by scheduling
packets at each network link. The prototype developed was geared toward
two-dimensional meshes. Starting from a precise theoretical study the authors
develop an architecture whose core is a comparator tree scheduler. The proto-
type was realized using a 0.5 µm CMOS process, required 900,000 transistors,
operates at 50 MHz and introduces a latency of 115 ns.

In [13] the authors present an implementation of a prototype reconfigurable
router based on FPGAs. The prototype implements IPv4 routing with a
throughput of up to 576Mbps, using a stream-based approach that facilitates
dynamic reconfiguration. It consists of three modules in series, each imple-
mented on a Xilinx 4062XL-3 FPGA and connected by a 36-bit systolic bus.
The modules have a clock speed of 36MHz and process one packet at a time as
16 data bits per cycle. The proposed router has been implemented with about
320 Configuration Logic Blocks (CLBs). In the Xilinx 4000XL series, CLB
contains two four-input look-up tables (LUTs), one three-input LUT, and two
flip-flops. As stated in the Xilinx Data Sheet, the LUTs in a CLB are equiva-
lent to 30 gates. The proposed prototype interacts only with memory and does
not take into account the physical links. More precisely, the latency reported
in the paper, about 100ns, does not include transceiver management and the
possible conflicts due to data exchange among transceivers and memory. It is
not possible to evaluate latency added by these operations.

Table 5 reports the main characteristics of our work and of the reviewed papers
when they use generally 4 or 5 links. As is evident, there are large differences.

• [6] and our work are both programmable. The main difference is that our
programmability depends on the FPGA implementation, whereas in the
other work it is due to a specialized programmable microprocessor. The
main differences are, of course, the latency and the size; in both cases our
proposal is better.

• The other two approaches are not programmable, but they are both interest-
ing because they represent two different alternatives: [12] is an architecture
for real-time communications while [7] is an accurate study based on an
architecture whose core is a crossbar switch. Taking into account our tar-
get technology, our solution is, obviously, slower. Instead, the design cost is
lower. As regards the number of transistors, our solution is comparable to
the Dimension Order Algorithm in [7]. Instead, work [12] requires the high-
est number of transistors. This is a consequence of the hardware required
to guarantee real-time communications.
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• In comparison with our work, the router proposed in [13] needs more tran-
sistors. This is a consequence of a larger data bus. It seems to have less
latency but it processes one packet at a time and the value reported does
not take into account latency introduced by transceivers.

4 Conclusions and Future Works

This paper accurately presents the design steps of a network interface for a
cluster of PCs. Compared with previous works, our solution gives the best
tradeoff between costs and performance. Further studies will be carried out to
develop a gigabit network interface card.
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5 The main characteristics of our and related works when there
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Table 1
Some known topologies in literature and the relative principal parameters.

Name N g D L

Hypercube [16] 2n n n n2n−1

De Bruijn [17] 2n 4 n 2n+1

Cube-Connected Cycle [18] n2n 3 2(n − 1) + �n/2� 3n2n−1

k-ary n-cube [19] kn 2n n�k/2� nkn

Shuffle Exchange Perm. [20] n! 3 9n2−22n+24
8 3n!/2

Cyclic Cube [21] nkn 2k �3n/2� nkn+1

Recursive-Cube of Ring RCR(3,n,0) [22] 8n 5 �n/2� + 3 20n

Table 2
Comparision between RCR and k-ary n-cube

Topology g 2g/D

Recursive-Cube of Ring RCR(3,13,0) 5 10/9

10-ary 2-cube 4 8/10

5-ary 3-cube 6 2

Table 3
Simulation results for RCR networks for different sizes (N), With and WithOut
Congestion Control (WCC vs WOCC).

N WOCC throughput WCC throughput WOCC Latency WCC Latency

32 0.90 0.91 79 37

64 0.73 0.74 130 84

128 0.41 0.46 260 230
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Table 5
The main characteristics of our and related works when there are 4 or 5 bi-directional
links. The number of transistors of our work has been evaluated taking into account
that in [14] it is reported that a LC corresponds to 12 gates and a gate corresponds
to 4 transistors [15]. We have also assumed 20 transistors for each flipflop [15].

Reference Transistors (K) Latency Links Notes

[6] 500 Higher 4 Programmable, TDM

[12] 900 115 ns 4 Not Programmable, Scheduler

[7] 34-128 a few ns 5 Not programmable, Crossbar

[13] 34-50 >100 ns ? Programmable

Our work 34 590 ns 5 Programmable, TDM
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