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The Enhanced LBG Algorithm

Abstract

Clustering applications cover several fields such as audio and video data compres-
sion, pattern recognition, computer vision, medical image recognition, etc. In this
paper we present a new clustering algorithm called Enhanced LBG (ELBG). It
belongs to the hard and K-means vector quantization groups and derives directly
from the simpler LBG. The basic idea we have developed is the concept of utility
of a codeword, a powerful instrument to overcome one of the main drawbacks of
clustering algorithms: generally, the results achieved are not good in the case of a
bad choice of the initial codebook. We will present our experimental results showing
that ELBG is able to find better codebooks than previous clustering techniques and
the computational complexity is virtually the same as the simpler LBG.

Key words: Clustering, Unsupervised Learning, LBG, GLA, LVQ, K-means, Hard
c-means, Fuzzy c-means.



1 Introduction

Clustering is an important instrument in engineering and other scientific dis-
ciplines. Its applications cover several fields such as audio (Paliwal & Atal,
1993) and video (Lookbaugh, Riskin, Chou, & Gray, 1993; Silva, Sampson, &
Ghanbari, 1996; Cosman, Gray, & Vetterli, 1996) data compression, pattern
recognition (Fukunaga, 1990), computer vision (Jolion, Meer, & Bataouche,
1991), medical image recognition (Perlmutter, Perlmutter, Gray, Olshen, &
Oehler, 1996), and so on.

The partitioning approach known as Vector Quantization (VQ) (Gersho &
Gray, 1992) derives a set (codebook) of reference or prototype vectors (code-
words) from a data set. In this manner each element of the data set is repre-
sented by only one codeword. Codewords are determined trying to minimize
an objective function (distortion) representing the Quantization Error (QE)
(Hofmann & Buhmann, 1997).

A widespread accepted classification scheme subdivides these techniques into
two main groups: hard (crisp) (Linde, Buzo, & Gray, 1980) or soft (fuzzy)
(Bezdek & Pal, 1995). The difference between these is mainly the degree of
membership of each vector to the clusters. During the construction of the
codebook, in the case of the hard group, each vector belongs to only one cluster
with a unitary degree of membership, whereas, for the fuzzy group, each vector
can belong to several clusters with different degrees of membership.

Another classification scheme distinguishes two other main groups: K–means
and competitive learning. The clustering techniques belonging to the first
scheme (Linde et al., 1980) try to minimize the average distortion through
a suitable choice of codewords. In the second case (Kohonen, 1989) the code-
words are obtained as a consequence of a process of competition between
them.

However, the performance of many VQ algorithms is strongly dependent on
the choice of the initial conditions and the configuration parameters; many
works have been developed in literature in order to solve this problem (Ko-
honen, 1989; Pal, Bezdek, & Tsao, 1993; Gonzalez, Graña, & D’Anjou, 1995;
Bezdek & Pal, 1995; Chinrungrueng & Séquin, 1995; Karayiannis & Pai, 1996;
Karayiannis, Bezdek, Pal, Hathaway, & Pai, 1996; Karayiannis, 1997; Hof-
mann & Buhmann, 1997).

In this paper we present the new algorithm we called Enhanced LBG (ELBG).
It belongs to the hard and K–means vector quantization groups and derives
directly from the simpler LBG (Linde et al., 1980). The basic idea we devel-
oped is the concept of utility of a codeword. Even if some authors already
introduced the utility (Fritzke, 1997), our definition, meaning and computa-
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tional complexity are totally different. The utility index we use is a powerful
instrument to overcome some of the greatest drawbacks of the LBG and other
VQ algorithms. As we have already stated, one of the main problems is that,
in the case of a bad choice of the initial codebook, generally, the results are not
good. The utility allows a good identification of these situations. Further, it
permits the recognition of the badly positioned codewords and gives us useful
indications about regions where they should be placed. Our paper, like work
from Chinrungrueng and Séquin (1995), has been inspired by a theorem from
Gersho (1979). This theorem states that, if some hypothesis are verified, the
distortion associated to each codeword is the same as the others in an opti-
mal codebook. In the same way, ELBG looks for a codebook to which each
codeword contributes in the same manner, i.e. the utility of all the codewords
is the same.

The experimental results we have reached show that ELBG is able to find
better codebooks than previous works, that it is practically independent of
the initial conditions and that the computational complexity is virtually the
same as the simpler LBG algorithm.

The paper is organized as follows: in Section 2 we introduce the basic VQ
concepts and the symbols we adopted; in Section 3 we examine the two main
necessary conditions so that a quantizer can be said to be optimum; in Section
4 we describe the classical LBG algorithm; in Section 5 we make some consid-
erations about the traditional LBG; in Section 6 we illustrate our algorithm;
in Section 7 we discuss the utility concept; in Section 8 we show that the over-
head introduced by our algorithm is negligible with respect to standard LBG;
in Section 9 we show our results and comparisons; lastly, Section 10 contains
the authors’ conclusions.

2 Vector Quantization

2.1 Definition

The objective of VQ is the representation of a set of feature vectors x ∈
X ⊆ �k by a set, Y = {y1 , ...,yNC

}, of NC reference vectors in �k. Y is
called codebook and its elements codewords. The vectors of X are called also
input patterns or input vectors. So, a VQ can be represented as a function:
q : X −→ Y . The knowledge of q permits us to obtain a partition S of X
constituted by the NC subsets Si (called cells):

Si = {x ∈ X : q(x) = yi} i = 1 , . . . ,NC (1)
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In the following, we will suppose that we are dealing with a finite input data
set constituted by NP elements, i.e. X = {x1 , . . . ,xNP

}.

2.2 Quantization Error

The Quantization Error (QE) is the value assumed by d(x, q(x)), where d is
a generic distance operator for vectors. The mean QE (MQE) is:

MQE ≡ D({Y,S}) =
1

NP

NP∑
p=1

d(xp , q(xp)) =
1

NP

NC∑
i=1

Di (2)

where we indicate with Di the ith cell total distortion

Di =
∑

n:xn∈Si

d(xn ,yi) (3)

Several functions can be adopted as distortion measures (Linde et al., 1980).
The most widely adopted is the squared Euclidean distance (Squared Error,
SE)

d(x,x′) =
k∑

i=1

(xi − x ′
i )

2 (4)

and we will use it in this paper. In this case, the MQE is called Mean Squared
Error (MSE). The square root of the MSE (RMSE) is also used. Other times,
Normalized Mean Squared Error (NMSE) is adopted. It corresponds to the
MSE divided by the MSE obtained with a codebook of only one codeword, c,
placed at the centroid 2 of the whole data set:

NMSE =
MSE

1
NP

∑NP
p=1 d(xp − c)

(5)

The interested reader can see (Linde et al., 1980) for a more detailed descrip-
tion of the MQE and for other quadratic distorsion measures.

2 see subsection 3.2 for the definition of centroid
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3 Optimal quantizer

A quantizer is optimum when, for each other quantizer with the same number
of codewords, a higher MQE is found. In mathematical terms, q∗ is optimum
if, for each other q, we have D(q∗) ≤ D(q).

In the following, the authors will describe the two main conditions which, from
a mathematical point of view, are necessary so that a quantizer can be said
to be optimum. The two conditions are usually called the Nearest Neighbour
Condition (NNC) and the Centroid Condition (CC).

3.1 Nearest Neighbor Condition

Given a fixed codebook Y , the NNC consists in assigning to each input vector
the nearest codeword. So, we divide the input data set in the following manner:

S̄i = {x ∈ X : d(x,yi) ≤ d(x,yj ),

j = 1, ..., NC, j �= i} i = 1, ..., NC (6)

The sets S̄i just defined, constitute a partition of the input data set. This
is the “Voronoi Partition” (Gersho & Gray, 1992) and is refered to with the
symbol P(Y ) = {S̄1, · · · , S̄NC

}. As P(Y ) must be a partition, when an input
vector has the same distance from two or more codewords, it needs to choose
a unique manner to assign this vector to only one S̄i.

NNC permits us to obtain an optimal partition (Linde et al., 1980), i.e. for
every partition S of the input data set, it holds:

D({Y,S}) ≥ D({Y,P(Y )}) (7)

3.2 Centroid Condition

Given a fixed partition S, the CC concerns the procedure to find the optimal
codebook.

Let us define centroid or center of gravity of a given set A ⊆ �k the vector
x̄(A) for which:

E{d(x, x̄(A)) | x ∈ A} = min
u∈�k

E{d(x,u) | x ∈ A} (8)
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If the number of elements of A is NA and the squared Euclidean distance is
adopted (4), we have:

x̄(A) =
1

NA

∑
x∈A

x (9)

If we take the codebook X̄(S) constituted by the centroid of all the cells of S:

X̄(S) ≡ {x̄(Si); i = i, ..., NC} (10)

it is optimum (Linde et al., 1980), i.e. for every codebook Y , it holds:

D{Y,S} ≥ D({X̄(S),S}) (11)

4 Generalized Lloyd Algorithm (GLA) or LBG

In 1980 Linde, Buzo and Gray (Linde et al., 1980) proposed an improvement
of the Lloyd’s technique (Lloyd, 1957). They extended Lloyd’s results from
mono- to k-dimensional cases. For this reason their algorithm is known as the
Generalized Lloyd Algorithm (GLA) or LBG from the initials of its authors.

In a few words, the LBG algorithm is a finite sequence of steps in which, at
every step, a new quantizer, with a total distortion less or equal to the previous
one, is produced.

Now, we will describe the LBG steps. We can distinguish two phases, as shown
in Fig. 1: the initialization of the codebook and its optimization. In the ini-
tialization phase two methods are mainly used: random and by splitting.

Firstly, we will describe the optimization step. It will simplify the LBG expla-
nation. In fact, several concepts necessary to describe this step are useful for
the initialization phase, too. In the following we will use these symbols:

• m: iteration number;
• Ym: mth codebook;
• Dm: MQE calculated at the mth iteration.

4.1 Codebook optimization

Fig. 2 shows the high-level flow-chart. The codebook optimization starts from
an initial codebook and, after some iterations, generates a final codebook with
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START

END

Random
Initialization

Initialization by
Splitting

Codebook
Optimization

INITIALIZATION

Fig. 1. The LBG procedure

a distortion corresponding to a local minimum.

(1) Initialization. The following values are fixed:
• NC : number of codewords;
• ε ≥ 0: precision of the optimization process;
• Y0: initial codebook;
• X = {xj ; j = 1 , ...,NP}: input patterns;
Further, the following assignments are made:
• m = 0;
• D−1 = +∞;

(2) Partition calculation. Given the codebook Ym, the partition P(Ym) is
calculated according to the NNC (6).

(3) Termination condition check. The quantizer distortion (Dm = D({Ym,P(Ym)})
is calculated according to eq. (2). If | (Dm−1 − Dm) | /Dm ≤ ε then the
optimization ends and Ym is the final returned codebook 3 .

(4) New codebook calculation. Given the partition P(Ym), the new code-
book is calculated according to the CC(10). In symbols:

Ym+1 = X̄(P(Ym)) (12)

After, the counter m is increased by one and the procedure follows from
step 2.

3 The termination condition depends both on the ε value and the adopted distortion
measure. It is meaningless to specify only the ε value because, with two different
distortion measures (as, for example, the MSE and the RMSE), the expected value
of the number of iterations can drastically change and, of course, the final mean
distortion value. In this paper, each time we specify an ε value, it refers to the
RMSE. A typical range of values for ε is [0.001, 0.1].
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New partition calculation
(P (Ym))

Distortion (Dm ) 
calculation

(Dm-1 - Dm) / Dm 
< ε

m=m+1

Yes No

Initial codebook (Y0);
ε

Start

End

m

D

=
= +∞−

0

1

;

Final codebook (Ym); New codebook calculation

( ( ( ))m mY X Y+ =1 P

�m=

��m �

Fig. 2. LBG codebook optimization

In (Linde et al., 1980) it is demonstrated that these steps assure that the series
Dm is not increasing and convergent.

4.2 Initialization of the codebook

The codebook initializiation is a very important task. In fact, a bad choice of
the initial codewords generally leads to a final quantizer with a high MQE.
Here, we describe the random initialization and the initialization by splitting.

• Random initialization. The initial codewords are randomly chosen (Pal
et al., 1993). Generally they are chosen inside the convex hull of the input
data set.
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• Initialization by splitting. This initialization requires that the number
of codewords is a power of 2. The procedure starts from only one codeword
that, recursively, splits it in two distinct codewords (Linde et al., 1980).
More precisely, the generic mth step consists in the splitting of all vectors
obtained at the end of the previous step. After the splitting, an optimization
step is executed according to the method described in sub-section 4.1.

y

y - e

y + e

Fig. 3. Splitting of a codeword

The splitting criterion is shown in Fig. 3. It starts from one codeword y. It
splits this vector into two close vectors y + e and y − e where e is a fixed
perturbation vector.

These techniques are not the only ones present in literature. From the others,
we cite the maximum distance initialization (Katsavounidis, Kuo, & Zhang,
1994).

5 Considerations about the LBG algorithm

The algorithm just presented usually finds a locally optimum quantizer. The
main problem is that, often, this optimum is very far from an acceptable
solution.

If we qualitatively comment the analytical expressions regarding the codeword
adjustment we could say that at each iteration codewords “move” through
contiguous regions. This implies that a bad initialization could lead to the
impossibility of finding a good quantizer.

For example, let us examine Fig. 4. On the left side, part (a), we see the code-
word number 4. According to the (6), it will always generate an empty cell
because all the elements of the data set are nearer to the other codewords. So,
following the steps of the traditional LBG, it cannot move and will never rep-
resent any element. For this reason we can say it is useless. The same authors
of the LBG (Linde et al., 1980) proposed some solutions to this problem such
as the assigning of the codeword to a non-empty cell.
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:  centroid

:  learning pattern

:  centroid

:  learning pattern

(b)(a)

Fig. 4. Badly positioned codewords

But we think there is another problem that strongly limits the classical LBG
and its solution appears a difficult task. Let us look at the right side, part
(b), of Fig. 4. This configuration shows two clusters and three codewords. In
the little cluster there are two codewords whereas, in the other, only one. The
elements in the data set in the smaller cluster are all well approximated by the
two related codewords. Instead, a lot of elements in the larger one are badly
approximated by the related codeword. For this geometrical distribuition, it
would be preferable that two codewords were inside the big cluster and only
one in the other, but the LBG optimization algorithm, in this situation, does
not permit the migration of a codeword from the little cluster to the big one.
This is a great limitation.

To improve the performance of the LBG algorithm, we think that it is crucial
to develop a criterion that identifies these situations. Further, it must be able
to find which codewords it is better to move and where they have to be placed,
without any contiguity limitation.

Some authors already introduced some interesting criterions (Fritzke, 1997).

6 Enhanced LBG (ELBG)

The aim of this section is to explain the ELBG algorithm in detail.

6.1 General considerations

The algorithm we propose is an attempt to find a solution for the two draw-
backs of the classical LBG we discussed in section 5. We will formally introduce
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a new quantity that we call the utility of a codeword. It allows us to deal with
both drawbacks described in the previous section from a unique point of view.

New partition calculation
(P (Ym))

Distortion (Dm ) 
calculation

(Dm-1 - Dm) / Dm 
< ε

m=m+1

Yes No

Initial codebook (Y0);
ε

Start

End

m

D

=
= +∞−

0

1

;

Final codebook (Ym);

ELBG block

New codebook calculation

( ( ( ))m mY X Y+ =1 P

�m=

���m �

Fig. 5. ELBG codebook optimization

Fig. 5 shows the high-level flow-chart of the ELBG algorithm. The only dif-
ference between LBG and ELBG is the ELBG block. The functionalities of
the ELBG block are summarized in Fig 6. First of all, there is the utility
evaluation. After the evaluation of the utilities of the codewords, we identify
the ones with a low utility. This information is very useful for the next step:
the smart shifting of codewords. We try to shift all the low-utility codewords
near to the ones with high utility. Each attempt leading to a lower MQE is
confirmed. The aim of these operations is to obtain the equalization of the
total distorsions related to cells (Di, see eq. (3)), as one of Gersho’s theorems
suggests (Gersho, 1979, 1986). As we will see in detail in the next sub-sections,
this allows us to overcome the drawbacks we exposed in section 5.

Here, we only say that the heart of the ELBG block is the execution of several
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Identfication of cells with
“low” utility

Attempts to shift codewords
with “low” utility near to

codewords with high utility

Utility evaluation

END

ELBG  block

START

Fig. 6. High-level flow-chart of the ELBG block

Shifting of Codewords Attempts (SoCA’s). When a SoCA produces a decrease
in the MQE, then the SoCA is confirmed. In this case we say that a Shift of
Codeword (SoC) is executed. If we do not have any MQE decrease, the shift
is discarded.

Besides, we wish to underline that all the additional steps we introduced in
the LBG algorithm to obtain the ELBG are very efficient. The term “effi-
cient” refers to a low computational complexity operation. So, the overhead
we introduced in the original LBG is negligible, as will be shown in section 8.

6.2 Distortion equalization and Utility

The idea of the utility was suggested to us by one of Gersho’s theorems (Ger-
sho, 1986) where he explained his partial distortion theorem (Gersho, 1979)
saying: “Each cell makes an equal contribution to the total distortion in opti-
mal vector quantization with high resolution”. Gersho’s theorem is true when
certain conditions are verified (according to Gersho (1979), a high resolution
quantizer has a number of codewords tending to infinite). But Chinrungrueng
and Séquin (1995), experimentally, proved that it maintains a certain validity
also when the codebook has a finite number of elements. So, we introduce a
new step inside the LBG to pursue the equalization of the total distortions
of the cells (Di). In this context, we define the “utility index” (Ui) of the ith
cell as the value of Di normalized with respect to its mean value (Dmean). In
formal terms, we have:

Dmean =
1

NC

NC∑
i=1

Di (13)
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Ui =
Di

Dmean

i = 1, ..., NC (14)

In the following, we will use both the term utility index of a cell and utility
index of a codeword. Substantially, there is no difference between the two
terms. In fact, we can use equations (13) and (14) only if a cell is considered
together with the related codeword and vice versa. We will often use only the
shorter term “utility”.

According to the definition just given, the equalization of the distorsions is
equivalent to the equalization of the utilities.

Our idea is to obtain the desired equalization by joining, for each SoCA, a
low-utility (lower than 1) cell with a cell adjacent to it, hoping to obtain a
bigger cell whose utility is closer to 1 than before. At the same time, we split
a high-utility (higher than 1) cell into two smaller ones whose utilities, are,
if possible, closer to 1 than the big cell. We can say that this operation is
equivalent to move the low-utility codeword inside the high-utility cell. If we
refer to Fig. 4. (a) we see that the utility of cell 4 (U4) is 0, that U2 and U3

are lower than 1 and that U1 is greater then 1. These values, according to the
possibility illustrated above, suggest moving the 4th codeword near the 1st
codeword. Instead, if we see Fig. 4. (b) we should move codeword 2 or 3 near
the 1st one. This is a “smart” manner of shifting codewords that allows their
migration through non-contiguous regions.

Fig. 12 shows a typical distribution of the utility indexes when an initial
random codebook is given. It is a very widespread “bell”. The shifting of the
codewords on the left side of the figure near to the ones on the right side
produces an adjustment of the original bell into a narrow one, as is shown in
Fig. 14. However, we must remember that our primary objective is the MQE
minimization. So, we execute a SoC only when we are sure that it produces
a mean distortion decrease. The way we execute a SoC and the evaluation of
its effect on the QE are the argument of the next subsections.

The considerations exposed in this sub-section allowed us to develop an ob-
jective criterion to select the codewords to be shifted and the cells where they
have to be placed, as will be explained in the next sub-sections.

6.3 Detailed description of the ELBG block

Fig. 7 details the previous Fig. 6 in which the main steps of the ELBG block
are illustrated.

The ELBG consists in the execution of a certain number of SoCA’s. In what
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follows, we will describe in detail a SoCA. We will use Figs. 8, 9, 10, 11. They
represent a SoCA for a simple bi-dimensional problem.

C.1)
Is there at least one
not-yet considered-
cell whose utility is

less than 1?

END

C.2) Selection of the cells i
and p where Ui<1 and Up>1

C.3) Codeword shift attempt
and local rearrangements

C.4) MQE estimation

YES

NO

C.5) if MQE is lowered, 
then confirm the shift

START

Fig. 7. Detailed description of the ELBG block

6.3.1 Termination condition

The first condition in the upper part of Fig. 7 regards the termination of the
whole ELBG block. We check to see if at least one cell has a utility index lower
than 1 and it has not been involved in previous shifts. If no cell exists, then
the algorithm ends. Otherwise the next steps regarding a new SoCA follow.

6.3.2 Selection of cells

This step is necessary to recognize all the cells involved in the current SoCA.
We look for two different cells.

• One cell must have a utility index less than 1. We will refer to it as the ith
cell.

• One cell must have a utility index greater than 1. We will indicate it as the
pth cell.

The ith cell, Si, is searched for in a sequential manner. Instead, the pth cell is
looked for in a stochastic way. The method adopted sounds like the roulette
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wheel selection in genetic algorithms (Russo, 1998). Practically, we choose a
cell with a probability Pp proportional to its utility value. In mathematical
terms:

Pp =
Up∑

h:Uh>1 Uh
(15)

6.3.3 Codeword shift and local rearrangements

This step consists in a SoCA. We try to shift the codeword yi near yp , i.e.
the codewords related to the cells Si and Sp respectively. This situation is
illustrated in Fig. 8 for our bi-dimensional problem.

Si yi

yp

SpSl

yl

Fig. 8. Initial situation before the SoCA

A similar shift produces a new codebook. In the traditional LBG, after a new
codebook generation, the calculation of the partition satisfying the NNC, i.e.
the Voronoi partition, follows. As we have several SoCA’s and each of them
must be evaluated, we would have to introduce a very heavy overhead into
the classical LBG 4 . Our aim is to improve the LBG with a low overhead, so
we avoid recalculating the Voronoi partition.

To simplify the overall procedure and, of course, to drastically reduce the over-
head, we suppose that, after the shift, in the new partition only the patterns
related to Si and Sp will be subject to change. In our algorithm, these patterns
will be the only ones with related codewords different from before. We shift
yi near yp. As yp is, generally, localized at the center of Sp, we think that it
is better to move yp , too. So, it is possible to distribute the two codewords
inside the Sp cell in a better way. The solution we have found is very simple.
It does not assure a better distribution, but we made a lot of experimental
trials that have shown its validity.

As a finite number of k-dimensional vectors forms the input data set, the

4 We must remember that the most onerous step in the LBG algorithm is precisely
the Voronoi partition calculation.
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δ1

δ2

δ1 /4 δ1 /4

δ2 /4

δ2 /4

yi

yp

Fig. 9. The cell Sp and the hyperbox containing it

Si

Sp

yp

yi

Sl

yl

Fig. 10. Codewords position immediately after the shift

generic pth cell is contained in the k-dimensional hyperbox Ip:

Ip = [x1m, x1M] × [x2m, x2M] × ... × [xkm, xkM] (16)

where xhm and xhM are respectively the minimum and maximum value as-
sumed by the hth dimension of all patterns belonging to Sp. We place yi and
yp on the principal diagonal of Ip. We divide the diagonal in three parts. Two
are equal to the half of the central one. We place the two codewords at the
ends of the central part as is illustrated in Figs. 9 and 10.

Afterwards, yi and yp are adjusted with a local traditional LBG with a high
value for ε (typically 0.1÷ 0.3), so only a very few iterations (one or two) are
generally executed. The codebook to be optimized contains only yi and yp

and the input data set is Sp. The result of this optimization step is two new
codewords (y′

i and y′
p) and two new cells (S ′

i and S ′
p). The new codewords

and the new cells substitute the corresponding ones in the old codebook and
partition respectively. We show this in the right part of Fig. 11.

After the patterns belonging to Sp have been rearranged, we still have to
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yp
’

yi
’yl

’

Si
’

Sp
’

Sl
’

Fig. 11. Codewords position and patterns distribution after the local rearrangements

rearrange the patterns of Si because the related codeword has been moved
away. We must again remember that the optimum way to assign these vectors
is to calculate, for each of them, the distance from all of the codewords. As we
want to avoid this operation, we adopt another sub-optimal low-complexity
operation. As shown in Figs 10 and 11, we assign all vectors in Si to Sl, yl

being the nearest codeword to yi . Afterwards, yl is substituted by the centroid
y′

l of the new set. In symbols:

⎧⎪⎨
⎪⎩

S ′
l = Sl ∪ Si;

y′
l = x̄(S ′

l )
(17)

Generally, this solution is sub-optimal because, in the Voronoi partition, the
vectors of Si could distribute themselves among more cells.

6.3.4 Mean Quantization Error estimation

Now we have to understand if the SoCA produces a lowering of the MQE. If
it does, then it is confirmed, i.e. it turns into a SoC. Otherwise the SoCA is
rejected.

For an exact evaluation of the MQE, the calculation of the Voronoi partition
is necessary. But, as we have already stated, this calculation will introduce
a very high overhead. For this reason we employ a sub-optimal, but efficient
solution again. It consists in the overestimation of the MQE we would obtain
by finding the Voronoi partition. If the overestimated MQE is lower than
the previous MQE (i.e the MQE we had before the SoCA) then we are sure
that the shift produces an actual decrease in the final MQE. None of these
operations require the calculation of the Voronoi partition. Thanks to this
trick, the overhead introduced by the ELBG block is negligible in comparison
to the time required by the standard LBG.

Focusing our attention only on the old three cells Si, Sp, Sl, and the three new
ones S ′

i, S ′
p, S ′

l, we can understand if the SoCA must be confirmed.
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Let us remember that Y and S are the codebook and the partition before the
shift. Y ′ and S ′ are the codebook and the partition we have after the shift.
Y ′ is obtained by replacing in Y the three codewords yi , yp , and yl with y′

i ,
y′

p , and y′
l respectively. In the same way, by substituting the related cells in

S, we obtain S ′.

The following symbols will be used:

• Dold is the MQE before the shift:

Dold = D({Y,S}) (18)

• Dnew is the MQE we would have by considering Y ′ and the Voronoi partition
deriving from it :

Dnew = D({Y ′,P(Y ′)}) (19)

• dold is the total distortion of the three considered cells before the shift:

dold = Di + Dl + Dp (20)

• dnew is the total distortion of the three considered cells after the shift:

dnew = D′
i + D′

l + D′
p (21)

If we calculated the Voronoi partition deriving from the new codebook Y ′, we
would understand if the SoCA is useful or not, i.e. if Dnew ≤ Dold or not.

We have proved in Appendix that, if we calculate only dnew and dold and
dnew ≤ dold, then we are sure that Dnew ≤ Dold. Our condition is only sufficient.
For this reason we say that our algorithm is sub-optimal.

6.3.5 Confirmation or discarding of the SoCA

If dnew ≤ dold the SoCA is confirmed. Therefore, we have a SoC. Otherwise
the attempt is discarded. Afterwards, we try to effect another SoCA, i.e. we
go back to point 6.3.1.

We can execute any number of consecutive SoC’s when there is a decrease
in the mean distortion. The final codebook and the related Voronoi partition
introduce a mean distortion that is less than that we have obtained before any
shift.

This approximation is, in the authors opinion, a good compromise between
computational effort and precision. The value of the idea is confirmed by the
experiments that we will illustrate in the next sections.

19



7 Considerations on the utility concept

In this Section we will discuss the utility concept. Starting from a case study
we will examine the utility behaviour in the LBG case and in the ELBG.

We took the well-known Lena’s image (Munson Jr., 1996) of 512× 512 pixels
of 256 grey levels. The image was divided into 4 × 4 blocks and the resulting
16384 16-dimensional vectors were used as a data set. We fixed NC = 256.
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Fig. 12. The initial distribution of the utility indexes

We generated a random initial codebook. In Fig. 12 the very wide and strongly
non-symmetrical initial distribution of the utility indexes is shown. The related
RMSE is 201.

Successively, we used the standard LBG algorithm. It required 18 iterations.
The final RMSE was 33.4. The ELBG with the same initial codebook required
only 11 iterations and the final RMSE was 25.8. In both algorithms we fixed
ε = 0.001.

In Figs. 13 and 14 the final distributions of the utility indexes are shown. In
the LBG case we find a lot of codewords with a utility of almost 0 and some
with very high utility values, up to 16÷ 18. In the other case we have a more
compact distribution. All utility values are comprised in the real interval [0, 3].

In the following, we will not use the concept of standard deviation because
we are dealing with several non symmetrical distributions. We prefer to use
the concepts of left and right standard deviations (σl, σr) (Teseo & Regazzoni,
1996). They are obtained calculating the standard deviation only of the values
below and above the mean value respectively.

20



0 2 4 6 8 10 12 14 16 18
0

20

40

60

80

100

120

140

160

180

200

Utility index

N
um

be
r 

of
 c

el
ls

Fig. 13. The final distribution of the
utility indexes when the LBG algo-
rithm is used
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utility indexes when the ELBG algo-
rithm is used

0 2 4 6 8 10 12 14 16 18
0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration number

si
gm

a 
le

ft

Fig. 15. σl versus the number of iterations in the LBG (dotted line) and in the
ELBG (solid line) case

Figs. 15 and 16 show σl and σr versus the number of iterations both in the
LBG and in the ELBG case. For the LBG, σl is almost constant to 1 for all
the iterations whereas σr decreases up to 3.72. It reaches about 90% of its
total decrease in 4 iterations and slowly continue to decreases up to the final
iteration. For the ELBG, σl decreases in only 3 iterations to almost its final
value of about 0.41. σr decreases up to 0.43 in only 3 iterations. So, ELBG
effectively succeeds in shifting codewords with very low utility indexes near
to codewords with very high utility indexes. Further, it “equalizes” the utility
distribution. In fact, we have the total deviation equal to 0.42, i.e. σ � σl � σr.
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Fig. 16. σr versus the number of iterations in the LBG (dotted line) and in the
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8 ELBG overhead estimation

The aim of this Section is to evaluate the ELBG overhead with respect to
classical LBG.

We used the same data set of the previous section and, in all tests performed,
we fixed ε = 0.001. As the performance of our method depends on the number
of codewords, we analyzed several cases ranging from NC = 128 to 1024.

For each dimension of the codebook, we randomly generated 15 initial code-
books. Then, for each codebook a LBG and an ELBG quantization were per-
formed. So, all the reported results are the average of the 15 runs. All runs
were executed on an Intel Pentium 100MHz based machine and are expressed
in seconds.

LBG ELBG

128 11.3 12.1

256 22.8 23.7

512 45.3 46.8

1024 91.1 94.3
Table 1
Execution times in seconds per iteration

Table 1 reports the mean time required for LBG and ELBG. This mean does
not comprise the initialization phases.

In Fig. 17 we report the confidence intervals of the percentage time increase per
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Fig. 17. Confidence intervals of the percentage time increase per iteration with a
confidence level of 99%

iteration with a confidence level of 99%. This figure shows that the overhead we
have introduced in the LBG algorithm is very low. Further, when the number
of codewords increases, the overhead decreases below 5%.

NC LBGrnd LBGspl ELBGrnd ELBGspl

128 23.6 13.4 11.4 11.2

256 19.4 12.0 11.0 10.4

512 19.2 10.8 10.8 10.6

1024 19.8 10.0 15.4 11.8
Table 2
Number of required iterations

Table 2 shows the average number (5 runs) of iterations required respectively
for the LBG with random initialization (LBGrnd), the LBG with initialization
by splitting (LBGspl), the ELBG with random initialization (ELBGrnd) and
the ELBG with initialization by splitting (LBGspl). The results reported show
that the LBGrnd is the worst of all. Up to a codebook of 512 codewords,
both the ELBGrnd and the ELBGspl require less iterations than the LBGspl.
The results we obtain for a codebook with a size of 1024 seems to show that
the ELBG works worse than the LBG. In effect, more iterations are required.
But the reason is that the LBG stops in local minimums. Viceversa, the ELBG
succeeds in escaping from these minimums better, and consequently, it requires
more iterations.

Fig. 18 shows the result we obtain in the case of a codebook with 1024 code-
words. The dashed line refers to the LBGspl whereas the other to the ELBGrnd.
After only three iterations the ELBG reaches a RMSE equal to about 20.0.
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Fig. 18. RMSE versus number of iterations. ELBGrnd (solid line) and LBGspl

(dashed line)

When the LBG stops it reaches a RMSE equal to about 20.7. We are using
the worst initialization (among the types reported in the paper) for the ELBG
and the best one for the LBG. Nevertheless, the ELBG performs better than
the LBG. Of course, the LBGrnd performs worse.

9 Results and comparisons

In this Section we will examine the ELBG performance with several applica-
tion examples ranging from simple bidimensional quantization approaches to
complex image compression tasks. We will compare our results with the most
recent results we have found in literature. Also in these examples we fixed
ε = 0.001. Besides, if it is not specified, all of the reported results are the
mean values of 5 runs.

9.1 Bidimensional cases

Chinrungrueng and Séquin (1995) propose their optimal adaptive technique
and examine several bidimensional cases. We examined two of these.

Polynomial case: as first case study we have taken 2000 patterns as follows:

{
x1 ∈ [−0.5, 0.5]
x2 = 8x3

1 − 3x1
(22)
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where the x1 values are uniformly spaced in their interval. We fixed NC = 16.

ELBGrnd ELBGspl LBGrnd LBGspl C. & S.

Iter. 10.4 10.6 14.8 7.8

NMSE 1.1E-2 1.1E-2 2.9E-2 1.1E-2 ∼ 1.1E − 2
Table 3
x2 = 8x3

1 − 3x1. C. & S. is the abbreviation we used for the technique from Chin-
rugrueng and Séquin (1995)

We have obtained the results reported in Table 3. In this case the differences
between the various methods are marginal because all methods (except the
LBG with random initialization), probably, find the global minimum.

Fig. 19. LBG final distribution

Fig. 20. ELBG final distribution
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Figs. 19 and 20 show the results obtained respectively with the LBG and
ELBG algorithms starting from the same random initial distribution.

Cantor distribution: as second bidimensional case, we examined the three-
level Cantor distribution (Chinrungrueng & Séquin, 1995). Even in this case we
considered 2000 patterns and 16 codewords. The results are reported in Table
4. Also in this case the differences between the various methods are marginal
because, probably, all methods (except the LBG with random initialization)
find the global minimum or a value very near to it.

ELBGrnd ELBGspl LBGrnd LBGspl C. & S.

Iter. 5.2 4.6 5.8 4.6

NMSE 1.2E-2 1.2E-2 3.2E-2 1.2E-2 ∼ 1.2E − 2
Table 4
Cantor’s distribution. C. & S. is the abbreviation we used for the technique from
Chinrugrueng and Séquin (1995)

Fig. 21. LBG final distribution
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Fig. 22. ELBG final distribution

The graphic results related to the final distributions for a run of the LBG and
the ELBG (both initialized with the same randomly generated codebook) are
reported in Figs 21 and 22 respectively. In these figures the points represent
the data set whereas the circles are the codewords.

Fritzke comparison: Fritzke (1997) used another bidimensional data-set to
compare his method, called LBG-U, with the standard LBG. The experiments
were done on a set of 500 input patterns 5 generated by a Gaussian mixture
distribution. The author performed several runs with NC ranging from 10 to
100. For all codebook sizes the mean improvement of Fritzke’s algorithm was
higher than 10% with respect to the LBG. But the LBG-U requires a lot
of iterations. This number goes from three to seven times that of the LBG
method.

NC LBG-U ELBG

RMSE ±σ Iter. RMSE ±σ Iter.

10 0.0453 ± 12.5% 31.5 ± 42.7% 0.0433 ± 0.20% 7.4 ± 28.0%

100 0.0125 ± 2.1% 57.7 ± 22.1% 0.0123 ± 0.41% 10.6 ± 10.8%
Table 5
ELBG and LBG-U comparison

We have performed the same tests and averaged the results of 10 runs. In Table
5 we have reported our results and the previous ones. The ELBG outperforms
LBG-U both as regards the final error and the number of required iterations.
We need about 20% of the iterations required with the LBG-U method.

5 available from ftp://ftp.neuroinformatik.ruhr-uni-bochum.de/pub/data/LBG-
U.dat
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9.2 Image compression

In image applications, often, the Peak Signal to Noise Ratio (PSNR) is used
to evaluate the resulting images after the quantization process. The PSNR is
defined as follows:

PSNR = 10 log10

2552

1
IJ

I−1∑
i=0

J−1∑
j=0

(f(i, j) − f̂(i, j))2

(23)

where f(i, j) and f̂(i, j) are respectively the grey level of the original image
and the reconstructed one. All grey levels are represented with an integer value
comprised in [0, 255].

Fig. 23. LBG reconstructed image of Lena

Comparison with previous works: For the first comparison, we use the
image of Lena (512 × 512 pixels) that we introduced in Sec. 7. Figs. 23 and
24 show the encoded images using 32 codewords respectively with LBG and
ELBG with random initialization. Comparing these two figures, we find an
improvement that we can quantify with a PSNR of 27.7 dB for the LBG and
28.8 dB for the ELBG.

Lee, Baek, and Sung (1997) present an enhanced performance K-means al-
gorithm. They improved both the classical K-means algorithm and Jancey’s
method (Anderberg, 1973). The modified K-means algorithm was stopped
when the MSE was within 0.05% of the previous one. This is equivalent to
our ε = 0.00025. Table 6 shows previous results and our present results when
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Fig. 24. ELBG reconstructed image of Lena

NC Modified K-means ELBG

PSNR (dB) Iter. PSNR (dB) Iter.

256 31.92 20 31.94 10.4

512 33.09 17 33.14 10.6

1024 34.42 19 34.59 11.8
Table 6
Lee et al. and ELBG comparison

initialization by splitting is used. These results refer to the same Lena’s image
as the previous comparison. In this case we improved both the error and the
total number of iterations, that is about half.

Karayiannis and Pai (1996) improve Fuzzy Algorithms for Learning Vector
Quantization. They used the Lena image of size 256× 256 pixels of 8-bit gray
values and 512 codewords. As their method depends on several parameters,
they executed several runs with different parameter values. Among their re-
sults the best one was a PSNR of 32.62 dB. With the same initial hypothesis
we obtained 33.04 dB with the random initialization and 33.09 dB with the
initialization by splitting.

A study when NC increases. When NC increases, the quantization prob-
lem becomes more difficult. In fact, more codewords and, consequently, more
parameters must be found. We think that a good VQ should work well even
in this cases. In Fig. 25 we report the results we obtained. We used Lena’s
image with 512 × 512 pixels. The worst performance is obtained by the LBG
algorithm both with random initialization and initialization by splitting. The

29



Np=16384

25,000

30,000

35,000

40,000

45,000

50,000

10 100 1000 10000 100000
Nc

P
S

N
R

 (
d

B
)

  ELBGrnd    

  ELBGspl    

  LBGrnd    

  LBGspl    

ELBGrnd

ELBGspl

LBGrnd

LBGspl

~
~

Inf    

~
~

Fig. 25. PSNR in dB versus the size of the codebook

figure clearly shows that LBG with random initialization finds very bad lo-
cal minimums. And when NC increases there is very little improvement in the
PSNR. With initialization by splitting things go better, but a comparison with
the ELBG shows that, above all for NC greater than 4096, there is a large dif-
ference. ELBG succeeds in escaping from bad local minimums. Further, when
NC = NP = 16384, it finds the global optimum. In a few iterations it puts
every codeword equal to a different input pattern!

10 Conclusions

In this paper the authors have introduced a new clustering technique they
called ELBG. It is based on the concept of utility of a codeword. This new
quantity shows very interesting properties. It allows us to understand which
codewords are badly positioned and where they should be moved to escape
from the proximity of a local minimum in the error function. The analysis
of the main properties of the utility index has permitted us to develop an
algorithm whose computational complexity is negligible in comparison to the
simpler LBG algorithm. This algorithm improves decidedly the performance
of the works regarding the most recent advances in clustering tasks. Further,
the ELBG shows all its potentiality when the number of codewords increases.
As the number of parameters to be found (the components of all codewords)
increases, the error function becomes more and more complex and there are
plenty of local minimums. So, it becomes very difficult to reach good results.
With a significant example we have shown that ELBG works well also in
these cases. Our results have highlighted that when the number of codewords
increases the ELBG improvement increases, too.
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11 Appendix

Let us suppose we have performed a SoCA as explained in sections 6.3.3 and
6.3.4. Let us suppose that all the hypothesis made in these sections are true.
We want to demonstrate that:

if dnew ≤ dold, then Dnew ≤ Dold

Let us indicate dconst = (NPDold − dold). The quantity dconst is the total dis-
tortion derived from the whole codebook and codewords eliminating the code-
words and the patterns related to the ith, pth and lth cells. It remains constant
from the old codebook to the new one. So:

D({Y ′,S ′}) = 1
NP

(dnew + dconst) ≤ 1
NP

(dold + dconst) = Dold.

But, from the NNC, we know that

D({Y ′,P(Y ′)}) <= D({Y ′,S ′}) ∀S ′.

So we obtain:

Dnew = D({Y ′,P(Y ′)}) ≤ Dold

as we wished to demonstrate.
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